- Description
- Quick Selector Guide
- Specifications
- Setup Software
- Mechanical
- Documents
- Applications
- Accessories

Features
- Times periodic events with width from 1 µs to 199.999 s
- Transmits average time of periodic events with width from 1 µs to 199.999 s
- Resolution to 0.2 µs, rep rated to 250 kHz
- Inputs from NPN or PNP proximity switches, contact closures, digital logic, or magnetic pickups down to 12 mV
- Trigger on positive or negative pulse edges
- 4-20 mA, 0-20 mA, 0-10V or -10V to +10V transmitter output, (isolated)
- Analog output resolution 0.0015% of span, accuracy ±0.02% of span
- RS232 or RS485 serial data, Modbus or Laurel ASCII protocol (isolated)
- Dual 120 mA solid state relays for alarm or control (isolated)
- 5V, 10V, 12V, or 24V dc transducer excitation output (isolated)
- Power 85-264 Vac / 90-300 Vdc or 10-48 Vdc / 12-32 Vac (isolated)
- DIN rail mount housing, 22.5 mm wide, detachable screw-clamp connectors
- Operating temperature from -40°C to 70°C (-40°F to 158°F)
The Laureate™ LT Series DIN rail analog transmitter with serial data communication and analog outputs for versatile connectivity.
The digitally programmable transmitter features two relays for alarm or control. The series offers exceptional accuracy with Input frequencies from 0.005 Hz to 1 MHz. The LT Series transmitters offer the same high performance, signal conditioning, and programmable features as Laureate digital panel meters, counters, and timers.
The Laureate 4-20 mA, 0-20 mA, 0-10V or -10V to +10V and RS232/RS485 output transmitter for time interval can transmit pulse width or time delay between individual pulses to a resolution of 0.2 µs for periodic events. It can also transmit average pulse width or average time delay between multiple pulses.
Time interval is measured between inputs on channels A and B. Timing starts when a pulse is applied to Channel A (selectable positive or negative edge), and ends when a pulse is applied to Channel B (selectable positive or negative edge). In case of a single pulsed signal, the A and B inputs can be tied together. A positive or negative slope may be selected to start timing, and the opposite slope must be selected to stop timing. Timing is achieved by counting 5.5 MHz clock pulses. Multiple integral time intervals are averaged over a gate time which is selectable from 10 ms to 199.99 s and also controls the maximum output rate.
The dual-channel signal conditioner used for pulse detection accepts inputs from proximity switches with PNP or NPN output, TTL or CMOS logic, magnetic pickups, contact closures, and other signals from 12 mV to 250 Vac. Jumper selections provide optimum operation for different sensor types and noise conditions. A built-in 5V, 10V, 12V, or 24V dc excitation supply can power proximity switches and other sensors, and eliminate the need for an external power supply.
Exceptional Accuracy and Stability. Laureate transmitters determine frequency by taking the inverse of period as measured with a calibrated quartz crystal time base. This results in extremely accurate and stable 6-digit internal readings (±999,999 counts), which are then processed in software. The analog output is generated by an ultra-linear 16-bit (65,536 step) digital-to-analog converter (DAC) for 0.02% output accuracy. The update rate of the transmitter output is a programmed gate time + 30 ms + 0-2 signal periods. For a 60 Hz signal, the update rate would be 20 per second. Such fast update rates are ideal for alarm and control.
The update rate of the transmitter output is a programmed gate time + 30 ms + 0-2 signal periods. For a 60 Hz signal, the update rate would be 20 per second. Such fast update rates are ideal for alarm and control.
All signal conditioner board ranges are factory-calibrated, with calibration factors for each range securely stored in an onboard EEPROM. These factors can be scaled via software to accommodate external shunts, enabling field replacement of signal conditioner boards without necessitating recalibration of the associated transmitter. For optimal accuracy, factory recalibration is recommended annually. All Laurel Electronics instruments undergo factory calibration using the industry-leading Fluke calibrators, which are recalibrated yearly and certified traceable to national standards, ensuring the highest level of precision and reliability.
Laureate Transmitters are easily programmed with Laurel’s free Instrument Setup Software, downloadable from our website and compatible with Windows PCs, requiring a data interface board for setup.
Standard Features of Laureate LT Transmitters Include:
- Serial communications output, (isolated), RS232 or RS485 (half or full duplex), jumper selectable. Three protocols are user selectable: Modbus RTU, Modbus ASCII, or Laurel ASCII. Modbus operation is fully compliant with Modbus Over Serial Line Specification V1.0 (2002). The Laurel ASCII protocol is simpler than the Modbus protocol and is recommended when all devices are Laureates.
- 4-20 mA, 0-10V or -10V to +10V analog transmitter output, (isolated), jumper-selectable and user scalable. All selections provide 0.0015% resolution of output span and 0.02% output accuracy of a reading from -99,999 to +99,999 counts that is also transmitted digitally. Output isolation from signal and power grounds eliminates potential ground loop problems. Note that Ethernet data I/O is provided by Laurel's LTE series transmitters.
- Dual-channel pulse inputs for voltage signals, NPN or PNP proximity switches, contact closures, magnetic pickups or flow meters.
- Dual solid state relays, (isolated), for alarm or control. Rated 120 mA at 130 Vac or 170 Vdc.
- Selectable transducer excitation output, (isolated), user selectable 5V@100 mA, 10V@120 mA, 12V@100 mA, or 24V@50 mA.
- Power 85-264 Vac, (isolated), low-voltage 10-48 Vdc or 12-32 Vac power is optional.
Digital signal filtering modes can be selected to ensure stable readings in electrically noisy environments.
- An unfiltered selection provides true peak and valley readings and aids in control applications.
- A batch average filter selection averages each 16 conversions.
- An adaptive moving average filter selection provides a choice of 8 time constants from 80 ms to 9.6 seconds. When a significant change in signal level occurs, the filter adapts by briefly switching to the shortest time to follow the change, then reverts back to its selected time constant. An Auto setting selects the time constant selection based on signal noise.
Peak and valley values are automatically captured. These may be displayed via Laurel's free Instrument Setup Software, which runs on a PC under MS Windows or can be transmitted as serial data.
Two control inputs (CMOS/TTL levels, logic 0 = tied to digital ground, logic 1 = open) or dry contacts that can be set to control / activate 14 transmitter commands.
An (isolated) 5, 10, 12, or 24 Vdc excitation output is standard to power transducers or two-wire transmitters. Ratiometric operation, which automatically compensates for changes in the applied excitation, is jumper selectable for applications, such as bridges, where the signal to be measured is proportional to the excitation level.
LT series DIN rail Transmitters & signal conditioners can be interfaced to a wide range of sensors and transducers using one of seven available plug-in signal conditioner boards. The transmitters duplicate the high performance (high accuracy, high read rate) and extensive programmable features of Laureate 1/8 DIN digital panel meters, counters and timers. They utilize the same signal conditioners boards, much of the same firmware, and Laurel's free Windows-based Instrument Setup Software. They come in a compact DIN rail mount package with detachable screw-clamp connectors for easy wiring.
The LT series Transmitters accessible from this page include a 4-20 mA, 0-20 mA, 0-10V, or -10V to +10V analog output (isolated, user selectable), an RS232 or RS485 serial data interface (isolated, user selectable), and dual 120 mA solid state AC/DC relays (isolated). An (isolated) 5, 10, 12, or 24 Vdc transducer excitation output is included with all models other than those with a temperature or AC RMS signal conditioner.
Connecting Laureate LT Transmitters to a Local Area Network (LAN)
Up to 30 Laureate LT Transmitters and/or Digital Panel Meters can be configured for RS485 and daisy-chained to an LT Transmitter for seamless LAN integration. Alternatively, Laurel LTE series Ethernet transmitters can connect directly to a LAN via an Ethernet cable. Setup for both configurations is streamlined using Laurel’s free Instrument Setup Software, which simplifies node discovery and transmitter configuration.
Flexible Communication Options for LT Transmitters
Laureate Transmitters can be equipped with Laurel communication boards to support various interfaces and protocols. These include serial interfaces with ASCII or Modbus RTU protocols, and Ethernet interfaces with web access, ASCII, or Modbus TCP/IP protocols, ensuring versatile connectivity for your commercial applications.
LT Transmitter Signal Input & Function | Model Series | Analog Output | RS232 & RS485 | Dual Relays | |
---|---|---|---|---|---|
1 | DC Input Voltage and Current | LT-DC | ![]() |
![]() |
![]() |
2 | AC RMS Voltage or Current | LT-RMS | ![]() |
![]() |
![]() |
3 | Process Voltage or Current | LT-P | ![]() |
![]() |
![]() |
4 | Weighing Applications | LT-WA | ![]() |
![]() |
![]() |
5 | Load Cell & Microvolt Signals | LT-WM | ![]() |
![]() |
![]() |
6 | Thermocouple (Types J, K, T, E, N, R, S) | LT-TC | ![]() |
![]() |
![]() |
7 | RTD Temperature | LT-RTD | ![]() |
![]() |
![]() |
8 | Resistance in Ohms | LT-R | ![]() |
![]() |
![]() |
9 | Frequency, Rate, Speed | LT-FR | ![]() |
![]() |
![]() |
10 | Pulse Input Totalizer | LT-FR | ![]() |
![]() |
![]() |
11 | Process Signal Totalizer | LT-VF | ![]() |
![]() |
![]() |
12 | Sum, Difference, Ratio, Product of 2 Inputs | LT-FR | ![]() |
![]() |
![]() |
13 | Batch Controller Pulse Input | LT-FR | ![]() |
![]() |
![]() |
14 | Batch Controller Analog Input | LT-FR | ![]() |
![]() |
![]() |
15 | On/Off Duty Cycle | LT-FR | ![]() |
![]() |
![]() |
16 | Stopwatch Timing for Single Events | LT-FR | ![]() |
![]() |
![]() |
17 | Average Time of Periodic Events | LT-FR | ![]() |
![]() |
![]() |
18 | AC Phase Angle and Power Factor | LT-FR | ![]() |
![]() |
![]() |
19 | Quadrature Position or Rate | LT-QD | ![]() |
![]() |
![]() |
4-20 mA & Serial Data Output Transmitter for Time of Periodic Events
Pulse Input | ||||
---|---|---|---|---|
Types | AC, pulses from NPN, PNP transistors, contact closures, magnetic pickups | |||
Signal Ground | Common ground for channels A & B. | |||
Minimum Signal | Nine ranges from (-12 to +12 mV) to (+1.25 to +2.1V). | |||
Maximum Signal | 250 Vac | |||
Maximum Frequency | 1 MHz, 30 kHz, 250 Hz (selectable). | |||
Contact Debounce | 0, 3, 50 ms (selectable). | |||
Time Base Accuracy | Quartz crystal calibrated to ±2 ppm. | |||
Span Tempco | ±1 ppm/°C (typ) | |||
Long-term Drift | ±5 ppm/year | |||
Recalibration: All ranges are calibrated at the factory. Recalibration is recommended every 12 months. | ||||
Time Interval Mode | ||||
Timing Start | Channel A pulse, + or - edges | |||
Timing Stop | Channel B pulse, + or - edges | |||
Update Rate | Gate time + 30 ms + 0-2 time intervals | |||
Gate Time | Selectable 10 ms to 199.99 s | |||
Time to Zero Output | Selectable 10 ms to 199.99 s | |||
Resolution | ||||
0 - 199.999 s | 1 ms | |||
0 - 99.9999 s | 100 µs | |||
0 - 9.99999 s | 10 µs | |||
0 - .999999 s | 1 µs | |||
0 - .099999 s | 0.2 µs (after averaging) | |||
Analog Output (standard) | ||||
Output Levels | 4-20 mA, 0-20 mA, 0-10 Vdc, -10 to +10Vdc (user selectable) | |||
Compliance at 20 mA | 10V (0-500Ω load) | |||
Compliance at 10V | 2 mA (5 kΩ or higher load) | |||
Output Resolution | 16 bits (65,536 steps) | |||
Output Accuracy | ±0.02% of output span | |||
Output Update Rate | Programmed gate time + 30 ms + 0-2 signal periods | |||
Output Isolation | 250V rms working, 2.3 kV rms per 1 minute test | |||
Serial Data Output (standard) | ||||
Signal Types | RS232 or RS485 (half or full duplex), jumper selectable | |||
Data Rates | 300, 600, 1200, 2400, 4800, 9600, 19200 baud | |||
Output Isolation | 250V rms working, 2.3 kV rms per 1 min test | |||
Serial Protocols | Modbus RTU, Modbus ASCII, Custom ASCII | |||
Modbus Compliance | Modbus over Serial Line Specification V1.0 (2002) | |||
RS232/485 Connector | Screw terminals for easy daisy chaining | |||
Digital Addresses | 247 for Modbus, 31 for Custom ASCII | |||
Dual Relay Output (standard) | ||||
Relay Type | Two solid state relays, SPST, normally open, Form A | |||
Load Rating | 120 mA at 140 Vac or 180 Vdc | |||
Excitation Output (standard) | ||||
5 Vdc | 5 Vdc ± 5%, 100 mA (jumper selectable) | |||
10 Vdc | 10 Vdc ± 5%, 120 mA (jumper selectable) | |||
12 Vdc | 12 Vdc ± 5%, 100 mA (jumper selectable) | |||
24 Vdc | 24 Vdc ± 5%, 50 mA (jumper selectable) | |||
Output Isolation | 50 Vdc from signal ground | |||
Power Input | ||||
Standard Power | 85-264 Vac or 90-300 Vdc | |||
Low Power Option | 10-48 Vdc or 12-32 Vac | |||
Power Frequency | DC or 47-63 Hz | |||
Power Isolation | 250V rms working, 2.3 kV rms per 1 min test | |||
Power Consumption at 24V | 1.5W typical, 3W with max excitation output | |||
Environmental | ||||
Operating Temperature | -40°C to 70°C (-40°F to 158°F) | |||
Storage Temperature | -40°C to 85°C (-40°F to 185°F) | |||
Relative Humidity | 95% at 40°C, non-condensing | |||
Cooling Required | Mount transmitters with ventilation holes at top and bottom. Leave 6 mm (1/4") between transmitters, or force air with a fan. | |||
Mechanical | ||||
Enclosure | Rugged black polycarbonate housing material | |||
Mounting | 35 mm rail per DIN EN 50022 | |||
Dimensions | 129 x 104 x 22.5 mm case | |||
Connectors | Detachable screw clamp connectors meet VDE / IEC / UL / CSA standards. RJ45 jack for Ethernet | |||
Tightening Torque | Screw terminal connectors: 5 lb-in (0.56 Nm) | |||
Weight | Complete transmitter: 183 g (6.5 oz) | |||
General | ||||
Programming | Utilize Laurel's free Instrument Setup Software, which runs on a PC under MS Windows. | |||
Security | Lockout options available using Laurel's free Instrument Setup Software. | |||
Warranty | 3 years parts & labor | Recalibration: All ranges are calibrated at the factory. Recalibration is recommended every 12 months. |
Transmitter Pinout

Free Instrument Setup Software for Series 2 Laureates
Free Downloadable Windows-based Instrument Setup (IS) software (Data Interface Board Required) for use with our programmable Digital Panel Meters, Scale Meters, Counters, Timers, Remote Displays, and Transmitters, are an easy method to set up Laureate 1/8 DIN digital panel meters, counters, timers, remote displays, and DIN-rail transmitters, as explained in the Instrument Setup Software Manual. Laureate 1/8 DIN instruments can also be set up from the front panel, as explained in their respective Owners Manuals. Instrument Setup software is of benefit whether or not the PC is connected to the instrument.
- When the PC is connected to the instrument, Instrument Setup software can retrieve the setup file from the instrument or open a default setup file or previously saved setup file from disk View Setup, then provides graphical user interface (GUI) screens with pull-down menus applicable to input, display, scaling, filtering, alarms, communications, analog output, and front panel lockouts. Fields that are not applicable to the instrument as configured are either left out or grayed out. Clicking on any item will bring up a detailed Help screen for that item. After editing, the setup file can be downloaded, uploaded to the instrument, or saved to a disk. The same setup file can then be downloaded into multiple instruments.
- When the PC is not connected to the instrument, the above GUI screens can be used to set up a virtual instrument. The setup file can then be saved to disk. Switching toView Menu then brings up a screen with the required front panel programming steps. This view can be printed out for use at the instrument site and to serve as a hard copy record.
Download Free Instrument Setup Software
Installation
Set User Account Control (UAC) of MS Windows to "Never notifiy me" so that Instrument Setup Software can create directories. The UAC change screen can be reached as follows:
- Under Windows 7, click on the Windows Start button in the lower left of the desktop and enter "UAC" in the search field.
- Under Windows 8, navigate to Control Panel, then to the "User Accounts and Family Safety" section, and click on "Change User Account Control Settings."
- Under Windows 10, click on the Windows Start button in the lower left of the desktop, then on "Settings", and enter "UAC" in the search field.
- Reboot your computer for the changed UAC setting to take effect.

RJ11-to-DB9 cable with rear view of DB9 connector to PC

RS232 cable, meter to PC, P/N CBL01
Laureate 1/8 DIN Laureate instruments must be equipped with a serial communications board and be connected to the computer via a serial communications cable. The connection can be via RS232, RS485, USB or Ethernet. Following setup, the serial communications board may be removed from the instrument if desired. The wiring of the RS232 cable is illustrated above with end views of the two connectors.
Laureate LT Series transmitters come standard with a 3-wire serial interface, which can be jumpered for RS232 or RS485.
Laureate LTE Series transmitters come standard with an Ethernet interface.
Meter Setup Screens
Click on any of the reduced screens below for a full-size screen view, then click on the Back button of your browser to return to this page. The screens examples below are for a fully-loaded Series 2 Digital Panel Meter (DPM), which is connected to the PC via RS232. If the meter is a Series 1 meter (pre-2007), this is sensed by the software, and somewhat different screens are brought up. Please see Series 1 setup screens.











Meter Setup Utilities




From the Main Menu, click on Readings if your PC is connected to the meter. A pull-down menu then offers three choices: List, Plot and Graph.
- List presents the latest readings in a 20-row by 10-column table. Press Pause at any time to freeze the display. This is one method to capture peak readings.
- Plot generates a plot of readings vs. time in seconds. It effectively turns the DPM-PC combination into a printing digital oscilloscope.
- Graph generates a histogram where the horizontal axis is the reading and the vertical axis is the number of occurrences of readings. The display continually resizes itself as the number of readings increases.


Dimensions

Dimensioned CAD assembly drawings in EPRT, STEP, x_t, .dwg, pdf file formats: Laureate-transmitter-case.zip (zipping prevents browser from opening CAD files as text files).
Applications of Time Interval Meters & Transmitters
Time Interval Mode for Time Delay | |
---|---|
![]() |
For periodic pulses applied to A and B channels, time delays can be measured down to 0.2 µs resolution from the rising or falling edge of A to the rising or falling edge of B (selectable). |
Time Interval Mode for Pulse Width | |
![]() |
The width of periodic pulses (t1 or t2) can be measured by tying the A and B channels together. As for time delay, readings are averaged over a user-selectable gate time. |
Timing Process Dynamics with two Meters or Transmitters | |
![]() |
The start and stop pulses used for timing can be generated by the dual relay board in a Laureate panel meter, counter or transmitter. For instance, the start and stop pulse edges can be created as temperature passes two alarm setpoints, or temperature cycles in a hysteresis control mode. |
Replacing an Oscilloscope with a Laureate Time Interval Meter or Transmitter | |
![]() |
An oscilloscope is great for viewing and timing pulses in a lab. However, in fixed installations where digital timing accuracy and control outputs are required, a low-cost Laureate time interval meter or transmitter will be the instrument of choice. Resolution to 0.2 µs is feasible. |
Instrumenting a Pulsed Laser System | |
![]() |
Some of the many possibilities in instrumenting a pulsed laser system with Laureate dual-channel counters and transmitters: elapsed time, number of pulses, pulse width, pulse separation, duty cycle, and pulse rep rate. |
CLB02
USB-to-RS232 Adapter Cable
CBL04
RS232 Cable for LT Transmitters
What is an LT DIN Rail Digital Transmitter with Serial Data Communication and Analog Outputs for Time of Periodic Events?
Introduction
In the realm of industrial automation and control systems, precision and reliability are paramount. An LT DIN Rail digital transmitter with serial data communication and analog outputs for time of periodic events is a sophisticated device designed to meet these demands. This article delves into the features, applications, and benefits of such transmitters, shedding light on how they contribute to efficient and accurate measurement and control.
What is an LT DIN Rail Digital Transmitter?
An LT DIN Rail digital transmitter is a compact, high-performance device that is mounted on a DIN rail, a standardized metal rail used for mounting electrical components in an enclosure. This transmitter is designed to convert various types of input signals into digital data, which can then be processed or transmitted for further use.
Key Features:
- DIN Rail Mounting: Facilitates easy installation and integration into existing systems.
- Digital Conversion: Converts analog or other types of signals into digital form for accurate processing.
- Compact Design: Saves space within control panels and enclosures.
Serial Data Communication
One of the standout features of an LT DIN Rail digital transmitter is its ability to communicate via serial data. Serial communication is a method of transmitting data one bit at a time over a single channel or wire. This is crucial for modern control systems that require reliable and efficient data transfer.
Advantages:
- Reduced Wiring Complexity: Serial communication simplifies wiring and reduces the need for multiple connections.
- Long-Distance Communication: Allows for effective communication over longer distances compared to parallel data transmission.
- Compatibility: Works with various industrial communication protocols such as RS-232, RS-485, and others.
Analog Outputs for Time of Periodic Events
In addition to serial data communication, LT DIN Rail digital transmitters provide analog outputs that represent time-based periodic events. These outputs are crucial for applications where the measurement of time intervals is essential.
Analog Output Features:
- Continuous Output: Provides a continuous analog signal proportional to the time of periodic events.
- Flexibility: Can be configured to output signals in various formats, such as voltage or current.
- Integration: Easily integrates with other control and monitoring systems to provide real-time feedback.
Applications
LT DIN Rail digital transmitters with serial data communication and analog outputs are used in a variety of industrial applications:
- Process Control: Monitoring and controlling processes that involve timed events or intervals.
- Manufacturing: Measuring and reporting time-based events in production lines.
- Automated Systems: Providing data for automated systems that require precise timing information.
- Utilities: Monitoring and controlling equipment in utility systems where time-based measurements are critical.
Benefits
- Enhanced Accuracy: Provides precise measurements and data conversion, improving overall system accuracy.
- Improved Efficiency: Reduces wiring complexity and facilitates easier integration into existing systems.
- Real-Time Monitoring: Offers real-time data on periodic events, enhancing system responsiveness and control.
- Versatility: Suitable for a wide range of industrial applications, making it a valuable component in various control systems.
Conclusion
An LT DIN Rail digital transmitter with serial data communication and analog outputs for time of periodic events is a powerful tool in modern industrial automation. Its combination of compact design, digital conversion, and versatile communication options make it an essential component for accurate and efficient measurement and control. By understanding its features and applications, industries can leverage this technology to enhance their operations and achieve greater precision in their processes.
Applications of LT DIN Rail Digital Transmitters with Serial Data Communication and Analog Outputs for Periodic Events
In modern industrial and commercial settings, monitoring and controlling various processes are crucial for maintaining efficiency and safety. LT DIN Rail Digital Transmitters with Serial Data Communication and Analog Outputs for Periodic Events have emerged as versatile tools in this realm. Their robust features make them ideal for a range of applications. Here’s a closer look at where and why these devices are used.
1. Industrial Automation
Applications:- Machine Monitoring: LT DIN Rail Transmitters are often used to monitor and control machines within manufacturing plants. They can track periodic events such as machine cycles or production rates, providing real-time data that helps in maintaining optimal performance and predicting maintenance needs.
- Process Control: In industrial automation, these transmitters facilitate precise control over processes by converting data from sensors into analog signals and transmitting it via serial communication to control systems.
- Enhanced Accuracy: Provides accurate measurements and control signals, ensuring that processes run smoothly.
- Reduced Downtime: Helps in predicting and preventing machine failures through periodic event monitoring.
2. Building Management Systems (BMS)
Applications:- HVAC Systems: These transmitters can be used in HVAC systems to monitor and control temperature and humidity levels. They convert sensor data into useful analog signals for the control systems and provide periodic reports on system performance.
- Energy Management: By tracking periodic energy consumption events, these devices help in optimizing energy usage and reducing costs.
Benefits:
- Improved Efficiency: Ensures that building systems operate within desired parameters, improving overall efficiency.
- Cost Savings: Helps in reducing energy consumption through precise monitoring and control.
3. Environmental Monitoring
Applications:
- Air Quality Monitoring: Used to monitor pollutants and other environmental parameters, these transmitters provide data for analysis and reporting, which can be crucial for compliance with environmental regulations.
- Water Quality Control: In water treatment plants, they monitor parameters such as pH, turbidity, and chemical levels, ensuring that water quality is maintained.
- Regulatory Compliance: Assists in meeting environmental regulations by providing accurate and timely data.
- Improved Safety: Ensures that environmental conditions remain within safe limits.
4. Energy Sector
Applications:- Renewable Energy Monitoring: In solar and wind power installations, these transmitters monitor the performance and efficiency of energy generation systems. They provide data on periodic events like energy production cycles and equipment status.
- Power Distribution: Used in substations and power distribution systems to monitor and control various parameters, ensuring reliable energy supply.
- Optimized Performance: Helps in optimizing energy generation and distribution by providing accurate data.
- Enhanced Reliability: Ensures stable energy supply through effective monitoring and control.
5. Transportation and Logistics
Applications:- Fleet Management: In logistics, these transmitters can track vehicle performance and periodic maintenance needs, contributing to efficient fleet management.
- Railway Systems: Used for monitoring and controlling various systems within railways, including signaling and track conditions.
- Operational Efficiency: Improves operational efficiency by providing timely data on performance and maintenance.
- Safety: Enhances safety by ensuring that systems are monitored and maintained effectively.
Conclusion
LT DIN Rail Digital Transmitters with Serial Data Communication and Analog Outputs are indispensable in various sectors, from industrial automation and building management to environmental monitoring and energy sector applications. Their ability to provide accurate, real-time data on periodic events helps in improving efficiency, ensuring safety, and reducing operational costs. As industries continue to advance, the role of these transmitters in facilitating smooth and effective operations is set to become even more significant.
Less Information.